Discrete Stratified Morse Theory: A User's Guide
نویسندگان
چکیده
Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of the stratified Morse theory of Goresky and MacPherson [17]. We describe the basics of this theory and prove fundamental theorems relating the topology of a general simplicial complex with the critical simplices of a discrete stratified Morse function on the complex. We also provide an algorithm that constructs a discrete stratified Morse function out of an arbitrary function defined on a finite simplicial complex; this is different from simply constructing a discrete Morse function on such a complex. We borrow Forman’s idea of a “user’s guide,” where we give simple examples to convey the utility of our theory. ∗E-mail: [email protected]. †E-mail: [email protected]. ar X iv :1 80 1. 03 18 3v 1 [ cs .C G ] 9 J an 2 01 8
منابع مشابه
A User’s Guide to Discrete Morse Theory
A number of questions from a variety of areas of mathematics lead one to the problem of analyzing the topology of a simplicial complex. However, there are few general techniques available to aid us in this study. On the other hand, some very general theories have been developed for the study of smooth manifolds. One of the most powerful, and useful, of these theories is Morse Theory. In this pa...
متن کاملStratified Morse Theory: Past and Present
In 1974, Mark Goresky and Robert MacPherson began their development of intersection homology theory (see [24] in these volumes), and their first paper on this topic appeared in 1980; see [12]. At that time, they were missing a fundamental tool which was available for the study of smooth manifolds; they had no Morse Theory for stratified spaces. Goresky and MacPherson wished to have a Stratified...
متن کاملGradient-Like Flows and Self-Indexing in Stratified Morse Theory
We develop the idea of self-indexing and the technology of gradient-like vector fields in the setting of Morse theory on a complex algebraic stratification. Our main result is the local existence, near a Morse critical point, of gradientlike vector fields satisfying certain “stratified dimension bounds up to fuzz” for the ascending and descending sets. As a global consequence of this, we derive...
متن کاملComputing Persistent Homology via Discrete Morse Theory
This report provides theoretical justification for the use of discrete Morse theory for the computation of homology and persistent homology, an overview of the state of the art for the computation of discrete Morse matchings and motivation for an interest in these computations, particularly from the point of view of topological data analysis. Additionally, a new simulated annealing based method...
متن کاملCombinatorial realization of the Thom-Smale complex via discrete Morse theory
In the case of smooth manifolds, we use Forman’s discrete Morse theory to realize combinatorially any Thom-Smale complex coming from a smooth Morse function by a couple triangulation-discrete Morse function. As an application, we prove that any Euler structure on a smooth oriented closed 3-manifold has a particular realization by a complete matching on the Hasse diagram of a triangulation of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.03183 شماره
صفحات -
تاریخ انتشار 2018